Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment.
نویسندگان
چکیده
The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems have often been overlooked. We examined the rates of Hg-NOM complexation both in a contaminated Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using reducible Hg (Hg(R)) measurements and C(18) solid phase extraction techniques. Of the filterable Hg at the headwaters of UEFPC, >90% was present as Hg(R) and this fraction decreased downstream but remained >29% of the filterable Hg at all sites. The presence of higher Hg(R) concentrations than would be predicted under equilibrium conditions in UEFPC and in experiments with a NOM isolate suggests that kinetic reactions are controlling the complexation between Hg and NOM. The slow formation of Hg-NOM complexes is attributed to competitive ligand exchange among various moieties and functional groups in NOM with a range of binding strengths and configurations. This study demonstrates the need to consider the effects of Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning.
منابع مشابه
Distribution of dissolved species and suspended particulate copper in an intertidal ecosystem affected by copper mine tailings in Northern Chile
The coastline near Chañaral in Northern Chile is one of the most highly Cu-contaminated zones in the world due to discharges from mining activities for more than 60 years. The speciation of Cu has been studied to determine the importance of organic complexation in highly contaminated areas, and to assess the likely physiological impacts of Cu on marine organisms. Dissolved Cu concentrations of ...
متن کاملEnhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades
Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic ma...
متن کاملMercury reduction and complexation by natural organic matter in anoxic environments.
Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic en...
متن کاملMercury cycling between the water column and surface sediments in a contaminated area.
Mercury cycling in the water column and upper sediments of a contaminated area, the Largo do Laranjo, Aveiro (Portugal), was evaluated after determination of reactive and non-reactive mercury concentrations in the water column and pore waters of sediments, collected in several places of this bay. In the water column, reactive mercury concentrations varied between 10 and 37 pmol dm(-3), the high...
متن کاملImpact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India.
Total organic carbon (TOC) (in sediment) and dissolved organic matter (DOM) (in water column) play important roles in controlling the mercury sequestration process by the sediments from the central east coast of India. This toxic metal prefers to associate with finer size particles (silt and clay) of sediments. Increasing concentrations of DOM in overlying water column may increase complexation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 43 22 شماره
صفحات -
تاریخ انتشار 2009